Wednesday, August 20, 2008

Analysis of manure and soil nitrogen mineralization during incubation

Abstract  Understanding the N-cycling processes that ensue after manuring soil is essential in order to estimate the value of manure as an N fertilizer. A laboratory incubation of manured soil was carried out in order to study N mineralization, gas fluxes, denitrification, and microbial N immobilization after manure application. Four different manures were enclosed in mesh bags to allow for the separate analysis of manure and soil. The soils received 0.15 mg manure N g–1 soil, and the microcosms were incubated aerobically and sampled throughout a 10-week period. Manure addition resulted in initial NH4-N concentrations of 22.1 to 36.6 mg kg–1 in the microcosms. All manured microcosms had net declines in soil mineral N. Denitrification resulted in the loss of 14.7 to 39.2% of the added manure N, and the largest N losses occurred in manures with high NH4-N content. Increased soil microbial biomass N amounted to 6.0 to 8.6% of the added manure N. While the microcosms as a whole had negative N mineralization, all microcosms had positive net nitrification within the manure bags. Gas fluxes of N2O and CO2 increased in all manured soils relative to the controls. Our results show that measurement of microbial biomass N and denitrification is important to understand the fate of manure N upon soil application.

No comments: